Math 102

Krishanu Sankar

November 8, 2018

Announcements

- Reminder: You can go over your midterm with me (email for appointment)
- Resources for questions
- Office Hours
- Piazza
- MLC
- AMS tutoring (see 'Getting Help’ tab on Canvas page)

Goals Today

- The general solution to the differential equation $\frac{d y}{d t}=a-b y$
- Qualitative: $b>0$ vs. $b<0$
- Explicit solution using Substitution
- Applications
- Newton's Law of Cooling
- Drug Delivery

Qualitative Analysis - $\frac{d y}{d t}=a-b y$

Question: Suppose that $b>0$. Calculate $\lim _{t \rightarrow \infty} y(t)$ when

$$
\begin{aligned}
& \Rightarrow y(0)<a / b \\
& y(0)=a / b \\
& y(0)>a / b
\end{aligned}
$$

Qualitative Analysis - $\frac{d y}{d t}=a-b y, b>0$

Qualitative Analysis - $\frac{d y}{d t}=a-b y, b>0$

Qualitative Analysis - $\frac{d y}{d t}=a-b y, b>0$

- $y(0)<a / b \Longrightarrow \lim _{t \rightarrow \infty} y(t)=a / b$
- $y(0)=a / b \Longrightarrow \lim _{t \rightarrow \infty} y(t)=a / b$
- $y(0)>a / b \Longrightarrow \lim _{t \rightarrow \infty} y(t)=a / b$

Qualitative Analysis - $\frac{d y}{d t}=a-b y, b<0$

Qualitative Analysis - $\frac{d y}{d t}=a-b y, b<0$

Solution by substitution

$$
\frac{d y}{d t}=a-b y=-b\left(y-\frac{a}{b}\right)
$$

We make a substitution

$$
z=y-\frac{a}{b} \Longrightarrow \frac{d z}{d t}=\frac{d y}{d t}
$$

Thus,

$$
\frac{d z}{d t}=-b z \Longrightarrow z(t)=C e^{-b t}
$$

Since $z(t)=y(t)-\frac{a}{b}$, this means that

$$
y(t)=\frac{a}{b}+C e^{-b t}
$$

Solution by substitution

$$
\frac{d y}{d t}=a-b y=-b\left(y-\frac{a}{b}\right)
$$

We make a substitution

$$
z=y-\frac{a}{b} \Longrightarrow \frac{d z}{d t}=\frac{d y}{d t}
$$

Thus,

$$
\frac{d z}{d t}=-b z \Longrightarrow z(t)=C e^{-b t}
$$

Since $z(t)=y(t)-\frac{a}{b}$, this means that

$$
y(t)=\frac{a}{b}+C e^{-b t}
$$

Solution by substitution

$$
\frac{d y}{d t}=a-b y=-b\left(y-\frac{a}{b}\right)
$$

We make a substitution

$$
z=y-\frac{a}{b} \Longrightarrow \frac{d z}{d t}=\frac{d y}{d t}
$$

Thus,

$$
\frac{d z}{d t}=-b z \Longrightarrow z(t)=C e^{-b t}
$$

Since $z(t)=y(t)-\frac{a}{b}$, this means that

$$
y(t)=\frac{a}{b}+C e^{-b t}
$$

Solution by substitution

$$
\frac{d y}{d t}=a-b y=-b\left(y-\frac{a}{b}\right)
$$

We make a substitution

$$
z=y-\frac{a}{b} \Longrightarrow \frac{d z}{d t}=\frac{d y}{d t}
$$

Thus,

$$
\frac{d z}{d t}=-b z \Longrightarrow z(t)=C e^{-b t}
$$

Since $z(t)=y(t)-\frac{a}{b}$, this means that

$$
y(t)=\frac{a}{b}+C e^{-b t}
$$

$$
y(t)=\frac{a}{b}+C e^{-b t}
$$

$b>0$: exponential decay

$b<0$: exponential growth

Autonomous Differential Equations

$$
\frac{d y}{d t}=f(y)
$$

Question: If $y(t)$ is a solution, then another solution is...

- $C \cdot y(t)$ for any constant C.
- $y(t)+C$ for any constant C.
- $y(t+C)$ for any constant C.
- Confused, help!

Autonomous Differential Equations

$$
\frac{d y}{d t}=f(P)
$$

Question: If $y(t)$ is a particular solution, then another solution is...

- $C \cdot y(t)$ for any constant C. (vertical dilation)
- $y(t)+C$ for any constant C. (vertical translation)
- $y(t+C)$ for any constant C (horizontal translation).

Horizontal Translation

$$
\frac{d y}{d t}=a-b y
$$

Consider the solution $y_{0}(t)=\frac{a}{b}+e^{k t}$. Then

$$
\begin{aligned}
y_{0}(t+C) & =\frac{a}{b}+e^{k(t+C)} \\
& =\frac{a}{b}+e^{k C} e^{k t}
\end{aligned}
$$

$e^{k C}$ can be any positive constant as C varies. Note that this doesn't give us ALL of the other solutions!

Newton's Law of Cooling: The rate of change of an object's temperature is proportional to the difference between the object's temperature and the ambient temperature.

Newton's Law of Cooling: The rate of change of an object's temperature is proportional to the difference between the object's temperature and the ambient temperature.

Question: A hot slice of pizza is placed on the countertop. The ambient temperature of the room is 20 C . Let $T(t)$ denote the temperature of the pizza at time t. Which of the following is reasonable?

$$
\begin{aligned}
& \text { 1. } \frac{d T}{d t}=20-0.01 T \\
& \text { 2. } \frac{d T}{d t}=0.01(20-T) \\
& \text { 3. } \frac{d T}{d t}=0.01 T-20 \\
& \text { 4. } \frac{d T}{d t}=0.01(T-20)
\end{aligned}
$$

Newton's Law of Cooling: The rate of change of an object's temperature is proportional to the difference between the object's temperature and the ambient temperature.

Question: A hot slice of pizza is placed on the countertop. The ambient temperature of the room is 20C. Let $T(t)$ denote the temperature of the pizza at time t. Which of the following is reasonable?

$$
\begin{aligned}
& \text { 1. } \frac{d T}{d t}=20-0.01 T \\
& \text { 2. } \frac{d T}{d t}=0.01(20-T) \\
& \text { 3. } \frac{d T}{d t}=0.01 T-20 \\
& \text { 4. } \frac{d T}{d t}=0.01(T-20)
\end{aligned}
$$

Do a sanity check: If $T<20$, is $\frac{d T}{d t}$ positive or negative? What if $T>20$?

Newton's Law of Cooling: The rate of change of an object's temperature is proportional to the difference between the object's temperature and the ambient temperature.

$$
\frac{d T}{d t}=k(E-T)
$$

where

- T is the temperature of the object.
$\rightarrow E$ is the ambient temperature. It is a constant.
- k is the proportionality constant.

A hot slice of pizza is placed on the countertop.
The ambient temperature of the room is 20C. Let $T(t)$ denote the temperature of the pizza at time t.

$$
\frac{d T}{d t}=0.01(20-T)
$$

Question: If $T(0)=100$, then calculate $T(t)$.
Question: If you eat the pizza while it has a temperature higher than 60C, you will burn your mouth. How long do you have to wait before you eat the pizza?

A hot slice of pizza is placed on the countertop. The ambient temperature of the room is 20 C . Let $T(t)$ denote the temperature of the pizza after t seconds.

$$
\frac{d T}{d t}=0.01(20-T)
$$

Question: If $T(0)=100$, then calculate $T(t)$.

$$
T(t)=20+80 e^{-0.01 t}
$$

Question: If you eat the pizza while it has a temperature higher than 60C, you will burn your mouth. How long do you have to wait before you eat the pizza?

$$
100 \ln (2) \approx 69.3 \text { seconds }
$$

Question: A drug is delivered to a patient at a constant rate $k_{I V}>0$. The body metabolizes the drug at a rate proportional to the amount of drug. Let $k_{m}>0$ be that proportionality constant.

1. $\frac{d D}{d t}=k_{I V}-k_{m} D$
2. $\frac{d D}{d t}=\left(k_{I V}-k_{m}\right) D$
3. $\frac{d D}{d t}=k_{I V} D-k_{m}$
4. $\frac{d D}{d t}=-k_{I V}+k_{m} D$

Question: A drug is delivered to a patient at a constant rate $k_{I V}>0$. The body metabolizes the drug at a rate proportional to the amount of drug. Let $k_{m}>0$ be that proportionality constant.

1. $\frac{d D}{d t}=k_{I V}-k_{m} D$
2. $\frac{d D}{d t}=\left(k_{I V}-k_{m}\right) D$
3. $\frac{d D}{d t}=k_{I V} D-k_{m}$
4. $\frac{d D}{d t}=-k_{I V}+k_{m} D$

$$
\frac{d D}{d t}=k_{I V}-k_{m} D
$$

Shown is the graph of $D(t)$ given that $D(0)=0$. The steady state is $D=6$, and the tangent line at $t=0$ has slope 3.

1. $k_{I V}=1$
2. $k_{I V}=2$
3. $k_{I V}=3$
4. $k_{I V}=6$

$$
\frac{d D}{d t}=k_{I V}-k_{m} D
$$

Shown is the graph of $D(t)$ given that $D(0)=0$. The steady state is $D=6$, and the tangent line at $t=0$ has slope 3.
Notice that

$$
D^{\prime}(0)=k_{I V}-k_{m} D(0)=k_{I V}-k_{m} \cdot 0=k_{I V}
$$

The tangent line at $t=0$ has slope $D^{\prime}(0)$, by the definition of the derivative. Since this slope equals 3 , we have that $D^{\prime}(0)=3$, and so $k_{I V}=3$.

$\frac{d D}{d t}=k_{I V}-k_{m} D$

More generally, if $D(0)=0$, then

$$
\begin{aligned}
D(t) & =\frac{k_{I V}}{k_{m}}-\frac{k_{I V}}{k_{m}} e^{-k_{m} t} \\
& =\frac{k_{I V}}{k_{m}}\left(1-e^{-k_{m} t}\right)
\end{aligned}
$$

Question: $\frac{k_{I V}}{k_{m}}$ is called the target dosage.
Calculate how long it will take for the drug dosage to reach half of the target dosage. What about $1 / 3$ of the target dosage?

